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Little information is available on the relationship between occupational exposure to inorganic
arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study was undertaken in
a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured
in the breathing zone of workers during 5 consecutive workdays, and urine samples were
obtained for analysis of arsenic metabolites—inorganic arsenic (As;), monomethylarsonic acid
(MMA), and dimethylarsinic acid (DMA)—prior to the start of each shift. Results from a small
number of cascade impactor air samples indicated that approximately 90% of total particle mass
and arsenic was present in particle size fractions >3.5 pm. The 8-hr time-weighted average
(TWA) mean arsenic air concentration was 48.3 pg/m?> (range 0.17-375.2) and the mean sum of
urinary arsenic (XAs) metabolites was 16.9 pg As/g creatinine (range 2.6-50.8). For an 8-hr
TWA of 10 pg/m? arsenic from coal fly ash, the predicted mean concentration of the XAs uri-
nary metabolites was 13.2 pg As/g creatinine [95% confidence interval (CI), 10.1-16.3).
Comparisons with previously published studies of exposure to arsenic trioxide vapors and dusts
in copper smelters suggest that bioavailability of arsenic from airborne coal fly ash (as indicated
by urinary excretion) is about one-third that seen in smelters and similar settings. Arsenic com-
pound characteristics, matrix composition, and particle size distribution probably play major
roles in determining actual uptake of airborne arsenic. Key words: arsenic, biological monitoring,
coal, occupational exposure, power plant, urinary metabolites. Environ Health Perspect
105:836-842 (1997)
http:/lehis.niehs.nih.gov

Occupational exposure to arsenic is known
to occur in a number of work settings
including arsenic pesticide manufacturing
and use, arsenic refining, glassware factories,
semiconductor fabrication, and nonferrous
smelters (1,2). Arsenic is considered a
human carcinogen based principally on
results from epidemiological studies that
include investigations of occupational expo-
sure as well as ecological studies of exposure
to naturally occurring arsenic in drinking
water (3). Occupational epidemiological
studies have been conducted principally in
copper smelting operations wherein past
high airborne exposures have been associat-
ed with increased risk of lung cancer (£11).
Similarly, most occupational studies to date
relating arsenic air exposure to urinary
excretion have been conducted in nonfer-
rous smelters (12-17). It is of interest to
examine other work settings to assess poten-
tial impacts of differences in exposure para-
meters. For example, differences in arsenic
compound(s), physical form(s), and matrix
compositions in different work settings may
lead to differences in arsenic uptake as esti-
mated by the relationship between air moni-
toring and urinary excretion (18).

Coal used in U.S. power plants is known
to contain trace amounts of arsenic with
averages ranging from 2 to 24 ppm. Coal-
fired power plant boilers are routinely shut
down at about 1-year intervals for cleaning
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and maintenance operations; such events are
termed planned maintenance outages.
Activities during these operations present
opportunities for elevated fly ash exposures
relative to the usual exposure circumstances
during routine work tasks performed during
normal operations of a coal-fired power
plant. The purpose of this study was to
assess occupational exposure to arsenic in
coal fly ash dust during maintenance outage
operations in a coal-burning power plant
that has previously been identified as utiliz-
ing coal containing very high arsenic levels.

Material and Methods

Power plant. The coal-fired power plant at
which the study was carried out is located
near the town of Novaky in the central
Slovak Republic. The plant, referred to as
Novaky ENO, has been in operation since
1953; local low-grade brown lignite coal
containing a mean concentration of approx-
imately 800 ppm arsenic (maximum 1350
ppm) is the principal fuel used at this plant
(19). In comparison with coals used in U.S.
coal-fired power plants, Slovak lignite coal
contains on the average about 30-300 times
higher arsenic concentrations. The first boil-
er unit of the plant began operation in 1953
with 180 megawatt (MW) output capacity.
A second 220 MW unit began operating in
1964 and, in 1979, a third 220 MW unit

was built. Technological improvements, as

well as reduction of the total output from
620 MW to 250 MW, has resulted in a
reduction of arsenic emissions to ambient air
from 90 tons of arsenic emitted per year in
1980 to 2.7 tons emitted in 1993 (19).
Work activities during the maintenance
outage studied at this coal-fired power plant
were very similar to those observed in coal-
fired power plants in the United States (20).
During the initial stages of a maintenance
outage, work activities are routinely directed
toward removal of accumulated fly ash and
clinker from inside the boiler structure as
well as the electrostatic precipitators (ESPs)
by use of vacuum systems and manual meth-
ods later followed by manual wet methods.
Maintenance and repair inside the boiler is
often performed in and around residual fly
ash that is not completely removed, and this
ash becomes airborne when agitated.
Subjects. Workers were initially inter-
viewed to determine interest in study partici-
pation and general health background. Forty
healthy power plant workers participated in
the study with informed consent. Work cate-
gories were selected to obtain observations
over as wide a gradient of exposure as possi-
ble. Worker groups boilercleaner and boiler-
maker differ in duties in that boilercleaners
are involved exclusively in cleaning activities
inside the boiler and other interior spaces of
the boiler structure such as ESPs, whereas
boilermakers are involved in general repair
and maintenance of equipment that may be
located either inside the boiler or in other
areas around the boiler. The technician cate-
gory consisted of other workers involved in
plant operations that were not necessarily
involved in the outage activities. This group
included electricians, technicians, operators,
and stokers and those engaged in general
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maintenance and workshop activities in
operational areas of the plant. Twenty com-
munity referents also volunteered to partici-
pate. A questionnaire was administered to all
subjects to obtain information on work his-
tory, diet (including consumption of
seafood in the week preceding the start of
the study), smoking, alcohol intake, medical
history, and other lifestyle factors.

Air sampling. Time-integrated full shift
air samples were collected in the breathing
zone of each worker during each of the 5
consecutive days of the work week. For
daily personal samples, battery-powered
personal air sampling pumps (SKC Model
224-PCXR3; SKC, Fullerton, CA) were
coupled with matched weight 37-mm
mixed cellulose ester filters housed in two-
stage plastic cassettes (SKC 225-503)
according to standard methods (21,22). Air
samples were collected at a flow rate of 2.0
Ipm; air flow rates were calibrated at the
beginning, during, and at the end of the
sampling time by use of a precision rotame-
ter (SKC 320-4A5), which had been cali-
brated against a soap film calibration device
(Amatec Prime Air calibrator; Amatec,
Orlando, FL) each day prior to the initia-
tion of field sampling. Filter cassettes were
carefully inspected during the entire sam-
pling period for potential overloading.
Occasionally it was necessary to replace the
sample filter cassette; in this event, results
from analysis of both filters were combined
to calculate the 8-hr time-weighted average
(TWA) concentration. Gravimetric and
arsenic analyses were carried out on each fil-
ter as described below.

A small number of airborne particle size
distribution samples were collected by use of
a battery-powered personal air sampling
pump (Gilian Model HES 113A; Gilian,
West Caldwell, NJ) connected to a six-stage
personal cascade impactor (Marple Model
296; Graseby, Atlanta, GA). Three personal
samples were collected in the breathing zone
of workers, and four area samples were col-
lected by suspending the device approximate-
ly 5 ft in height from a tripod placed in
selected work stations. Area sampling was
performed in locations where it was impossi-
ble for the worker to wear sampling equip-
ment due to a constrained work area (usually
inside the boiler). Cascade impactor filters
were desiccated and weighed on a microbal-
ance prior to sampling. Gravimetric and
arsenic analyses were carried out on each filter
as described below.

Analysis of air samples. For the gravi-
metric method for total dust, two matched-
weight filters were weighed on a six-place
microbalance (Cahn Instruments,
Philadelphia, PA) following a 48-hr desicca-
tion period. Filters were weighed within

0.01 mg. Differences between the matched-
weight filters were calculated and results
were expressed as total mass of particulate
(milligram) per cubic meter of air. Quality
control included daily instrument calibra-
tion with standard weights replicate analysis
and analysis of field blanks, which consti-
tuted approximately 10% of samples.

For the analysis of arsenic, filters con-
taining collected particulate were digested
according to National Institute for
Occupational Safety and Health (NIOSH)
Method 7900 (22) in closed Teflon beakers.
Analysis was conducted using graphite fur-
nace-atomic absorption spectrometry
[Varian Spectre Model AA-30 (Varian, Palo
Alto, CA) with GTA-96 graphite tube
atomizer]. Daily analytical quality control
procedures consisted of analysis of three sep-
arate reagent blanks and instrument calibra-
tion at three different known arsenic con-
centrations. Weekly quality control analyses
for arsenic were carried out on the National
Bureau of Standards (NBS) Trace Elements
in Coal Fly Ash, 1633a, Standard Reference
Material (SRM) sample. Results of these
analyses (7 = 19) showed a mean arsenic
recovery of 110% (range 91.5-145) of the
target concentration in the SRM coal fly
ash. Replicate analyses of 10% of all samples
was also carried out on a weekly basis.

Daily work activity diary. A daily diary
of work activities was completed by a
member of the research team for each
worker based on brief employee interviews
throughout the day and observations made
in the workplace. Information included
time of day, work location, work activities,
and respirator usage. Standard respirators
at this plant consisted of washable fabric
dust masks held in place by tie strings.

Urine sampling. Preshift spot urine sam-
ples were collected at home prior to the work
shift on each of 5 consecutive working days
for each individual. Urine was collected in
clean containers provided by the laboratory.
Urine samples were also collected from com-
munity volunteers not employed at the power
plant on two consecutive mornings chosen
randomly over the period during which the
occupational study was carried out.

Urine analysis. Creatinine concentra-
tion in urine samples was determined using
the Jaffe method (23). Arsenic species con-
sisting of inorganic arsenic (As;),
monomethylarsonic acid (MMA), and
dimethylarsinic acid (DMA) were quanti-
fied in urine by the hydride generation
method coupled with atomic absorption
spectrometry (24-27). Briefly, As, MMA,
and DMA were volatilized from solution
after reduction to the corresponding arsines
with sodium borohydride. Volatilized
arsines were then introduced onto a liquid
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nitrogen-cooled Chromosorb PAW-DMCS
(3% OV 101) chromatographic trap (VWR
Co., Chicago, IL), which, upon warming,
allowed for separation of species based on
boiling points. The released arsines were
carried by helium into a quartz cuvette
burner cell where they decomposed to
atomic arsenic. Arsenic concentrations were
then determined by atomic absorption
spectroscopy. Daily quality control proce-
dures included triplicate blank reagent
analyses; daily calibration checks using three
different known concentrations of standard
solutions of As;, MMA, and DMA; and
daily spiked urine samples containing stan-
dard addition quantities of known arsenic
species. Analytical results from spiked urine
species yielded mean arsenic species percent
recoveries and coefficents of variation (CV)
as follows: for As;, 105% recovery and CV
22%; for MMA, 104% recovery and CV
20%; and for DMA, 137% recovery and
CV 31%. Additionally, results of weekly
analysis of the NBS SRM 2670 standard
urine sample, Toxic Metals in Freeze Dried
Urine, showed a mean recovery of 105.4%
(range 80-143) with a CV of 26.5%.
Approximately 10% of all samples were
water blanks, and 10% of all samples were
analyzed twice as a precision check. Overall
precision averaged 4% for As;, 8% for
MMA, and 13% for DMA. Analytic results
from this laboratory also compared favor-
ably with other participating laboratories in
a concurrently conducted interlaboratory
comparison study (28).

Statistical methods. Grouped data were
analyzed using standard parametric meth-
ods. Supplementary analyses were carried
out on individual log transformed data
using univariate and multivariate linear
mixed models (29) to assess the impact of
adjustment for nonindependence of uri-
nary values resulting from repeated mea-
sures on each worker as well as other select-
ed variables. Models were fitted using the
SAS statistical software package (SAS
Institute, Cary, NC) (30). p<0.05 was
selected as the critical value for statistical
significance for all statistical tests.

Table 1. Selected characteristics of study participants

Number
Ageinyears Numberof eating
Group (years £ SD)  smokers seafood
Boilercleaners  40.1+1.6 5 0
(n=9)
Boilermakers 325+26 7 0
(n=13)
Technicians 38623 7 2
(n=18)
Community 38862 13 1
referents (n=20)
SD, standard deviation.
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Table 2. Airborne arsenic exposure, total airborne dust exposure, and concentrations of arsenic species in

urine as shown by geometric mean and geometric standard deviation

Arsenic species in urine (pg As/g creatinine)

Arsenic inair  Dustin air

Group (pg/m3) (mg/m3) As; MMA DMA YAs species
Boilercleaners®* 595+13 19113 4211 43+1.1 12711 22111
(n=9)

Boilermakers 172+13 44+12 28+12 23+1.1 7112 134+1.1
(n=13)

Technicians? 21+12 13+1.2 3011 19+11 55+1.1 M4+£11
(n=18)

YAs species, sum of As species.
4Includes two scaffold workers.

bincludes maintenance workers, electricians, operators, and stokers.

*Significantly different from boilermakers and technicians (ANOVA, p = 0.002).

Bl Arsenic in air
Urine, sum of arsenic metabolites
4 Urine, DMA

® Urine, MMA
A Urine, inorganic arsenic
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Figure 1. Arsenic air exposure measurements and patterns of individual urinary metabolite excretion plot-
ted over the entire time period of the study for two randomly chosen workers, (A) Worker 4 and (B)
Worker 28. These data illustrate the study design and nature of the data collected. DMA, dimethylarsinic

acid; MMA, monomethylarsonic acid.
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Results

Table 1 provides descriptive information
for each worker group on age, smoking,
and seafood consumption during the week
prior to the study period. No seafood was
consumed by the more highly exposed
groups and very little was consumed by
either the low exposed group or communi-
ty referents. Data collected from the ques-
tionnaire indicated that approximately
10% of study participants used local coal
for home heating. Examination of commu-
nity referent data, however, showed no cor-
relation between home coal use and urinary
values. Because the study was conducted in
mid-summer, active home heating was
probably not used in any of these house-
holds during the study period.

Individual values for arsenic air concen-
trations and urinary arsenic metabolite con-
centrations were distributed log-normally.
Six individual urine samples that were con-
sidered either too dilute or too concentrated
(creatinine concentrations <0.3 g/l or >3
g/l) were not included in the analysis. Table
2 lists the geometric mean (GM) and geo-
metric standard deviation (GSD) of expo-
sure to arsenic and dust, as well as arsenic
metabolite urinary excretion values, for each
of the worker groups. Daily exposures to
total dust and arsenic concentrations were
higher during the first few days of the out-
age, when manual dry cleaning methods
were employed, and then rapidly fell later
in the first and second week, as wet meth-
ods were used (data not shown).

Analysis of variance (ANOVA) showed a
significant difference between the boilerclean-
er group GM air arsenic values and GM sum
of arsenic metabolite species (XAs metabo-
lites) and the boilermaker and technician
groups (p = 0.002). However, air and urinary
values were not significantly different
between the latter two groups themselves (p =
0.467). No significant difference was found
among any of the three groups for GM uri-
nary As; values (p = 0.186). Arithmetic means
for air arsenic values were as follows: boiler-
cleaners, 138.9 pg/m3; boilermakers, 67.7
pg/m3; technicians, 5.7 pg/m3. Arithmetic
means for XAs urinary metabolites for each
group were boilercleaners, 25.7 pg As/g crea-
tinine; boilermakers, 17.8 pg As/g creatinine;
and technicians, 13.3 pg As/g creatinine. The
mean XAs urinary metabolites value for com-
munity referents (z = 20) in first void urine
samples collected on two randomly selected
consecutive days during the study period was
9.2 pg As/g creatinine.

Air arsenic exposure and concentrations
of arsenic species in urine were plotted for
every subject against the time point that
the measurements were obtained for the
entire length of the study period. Figure 1
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Figure 2. Plot of mean time-weighted average
(TWA) arsenic air concentration versus mean
sum of arsenic metabolites excreted during 5
days (n=40; r=0.67).

illustrates two such individual worker plots.
Inspection of plots revealed high interindi-
vidual variability in both exposure and uri-
nary metabolite excretion patterns.
Inspection of urinary XAs metabolite values
for worker samples collected prior to the
start of the first shift also showed variability
(mean 10.83 pg As/g creatinine + 6.0;
range 1.9-28.1). Comparison of workers’
mean first morning urinary values (zero
hour on Fig. 1) with community referents
values showed no significant difference
[10.8 vs. 9.2 pg As/g creatinine; #test (two-
tailed), p = 0.13]. Higher individual values
within the worker group implied that some
workers may have been occupationally
exposed to arsenic during the week preced-
ing the study period.

Regression of mean air arsenic values (x)
for each worker during the study period on
mean ZAs metabolites in urine () 16 hr
postshift (excluding urinary values for the
preshift sample on the first morning) was sta-
tistically significant (7 = 40; y = 12.22 + 0.10
% p <<0.001; r = 0.67) (Figure 2). Analyses
were run with and without inclusion of per-
cent daily time recorded wearing a cloth dust
mask respirator; no discernible effect on
regression of inclusion of the variable for res-
pirator usage was noted; therefore, final
analyses excluded this variable. Removal of
the two highest points from regression had
no effect on regression. Using the above
equation, for an 8-hr TWA air arsenic value
of 10 pg/m3, the predicted ZAs urinary
metabolites was 13.2 pg As/g creatinine
[95% confidence interval (CI), 10.1-16.3].

To investigate the potential impact of
interindividual variability on the
exposure—response relationship, analyses
were carried out using individual pairs
(TWA air concentration vs. urine value 16
hr postshift) of observations for each subject.
Log air arsenic versus log urinary metabolite
data were examined for each metabolite and
for the ZAs metabolites (» = 123) utilizing
univariate and multivariate linear mixed

models in SAS. This approach allowed

Table 3. Arsenic and dust concentration and percent particle mass per cascade impactor stage?

Stage cut-point Particle mass® Dust? Arsenic?
Stage {um) (mg/m?) (ug/md)
Back-up 0.25-05 18+16 08+0.6 15+18
8 0.5-0.9 1308 07:03 0.7+08
7 0.9-2.0 19+14 1.0+03 09+0.6
6 2.0-35 2410 1.4+07 58+39
5 356 12.1+£5.1 8.1+56 13775
4 6-10 325+10.6 21.2+£13.1 33.6+15.0
3 >10 479+1715 35.3+26.9 66.3 + 58.1

aMean of seven cascade impactor samples including three personal samples and four work area samples.

byalues shown are mean + standard deviation.

adjustment for between-individual variation
in initial urinary arsenic levels and also for
statistical dependence induced by making
repeated measurements per worker. The
potential impact of serial dependence was
explored; however, model comparison statis-
tics revealed this to be unnecessary.
Regression terms (fixed effects) for week,
day of week, and work group, as well as log
air arsenic concentration, were included in
multivariate models to affect adjustment for
these variables. Interaction between log air
arsenic and week or day was investigated;
however, no significant interactions were
identified. Models were run on each urinary
metabolite individually as well as on the ZAs
metabolites. Multivariate regression models
indicated that urinary MMA (log y = -0.005
+0.071 log x), DMA (log y = 0.488 + 0.101
log %), and XAs metabolites (log y = 0.430 +
0.058 log x), but not As; values (log y =
0.063 + 0.031 log x), were significantly
(p<0.05) related to arsenic air exposure after
statistical adjustment as described.

The group mean MMA:DMA ratio for
the most highly exposed group, boiler-
cleaners (0.34 + 0.16), was not found to be
significantly different from that of the low-
est exposure group, technicians (0.36 +
0.18; #-test, p = 0.62).

Results from the seven cascade impactor
samples are shown in Table 3. Approxi-
mately 90% of particle mass (and 93% of
arsenic) was present in fractions 23.5 pm
aerodynamic diameter. Ratios of micro-
grams of As per cubic meter to milligrams
of dust per cubic meter for each impactor
stage indicate that arsenic was distributed
fairly uniformly across all particle size frac-
tions because no significant difference was
found among ratios for different impactor

stages (2= 3.71, p=0.72).
Discussion

Work activities during the maintenance
outage studied at this coal-fired power
plant were very similar to those observed in
coal-fired power plants in the United States
(20). The local brown lignite coal used as
the fuel source in the Novaky power plant
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is, however, very dissimilar to coal burned
in U.S. power plants, particularly with
regard to arsenic concentration. Slovak lig-
nite coal contains a mean of 800 ppm
arsenic and ranging up to 1350 ppm (79).
U.S. coals, on the other hand, contain con-
siderably less arsenic; bituminous coal con-
tains the highest amounts of arsenic among
U.S. coals, with a mean of 23.5 ppm
arsenic (31). The other major types of U.S.
coal contain even less arsenic (subbitumi-
nous coal contains 2.7 ppm arsenic on
average while lignite coal contains an aver-
age of 5.0 ppm arsenic). Bituminous and
subbituminous coals are the two most
commonly burned coals in U.S. power
plants (32). Conventional coal cleaning
procedures employed in the United States
prior to burning coal result in an average
50% further reduction in arsenic content
below levels listed above (33).

Urinary data 16 hr postshift were related
to air arsenic concentrations using grouped
information (i.e., 7 = 40 pairs of mean uri-
nary values and mean personal exposure val-
ues averaged over the study period of 5 days)
as well as individual log urine and log air
sample results for each worker for each day
(n = 123). As previously mentioned, these
multivariate analyses were undertaken to
explore the potential effect on regression of
repeated measures and other factors.
Predicted ZAs urinary values for a fixed air
arsenic exposure of 10 pg/m?>, based on the
grouped and individual approaches that
both employ linear models, were in quite
good agreement (13.2 and 9.8 pg As/g crea-
tinine, respectively). Seixas and Sheppard
(39) compared accuracy and precision using
either grouped or individual exposure mea-
surements; they found that predictions
based on a linear approach with grouped
data appeared to be most robust. Because
the majority of occupational studies on
arsenic air exposure and urinary excretion
have taken a similar approach in data group-
ing and analysis, comparability of results is
facilitated by using this method.

During the past 20 years, at least five
studies have been undertaken in copper
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smelters and arsenic trioxide refineries in
which individual breathing zone exposure
to arsenic vapors and dusts and urinary
arsenic concentrations were measured
(12-15,17). Area measurements were used
in another copper smelter study to estimate
past personal exposure; these grouped
exposure estimates were then related to
grouped urinary excretion of arsenic species
(8). Other studies of arsenic exposure have
also been conducted: in a lead—acid storage
battery factory where exposure to arsine gas
and arsenic dust occurred (35), in a sulfuric
acid chemical factory where exposure to
arsenic trioxide vapors and dust were mea-
sured (16), and in a glass manufacturing
plant where exposure to arsenic trioxide
was assessed (36).

Summary information for seven studies
in which the mathematical relationship
between air exposure and urinary excretion
was determined by the authors is shown in
Table 4, along with results from this pre-
sent study. In one instance, the equation
was estimated from data presented in the
paper (13). Whenever data were available,
equations in the table represent the rela-
tionship between air and urine values (as
XAs metabolites or, in three instances, as
total arsenic) in samples collected 16 hr
postexposure. Using these equations (Table
4), the estimated predicted value of arsenic
in urine (either as total As or the ZAs
metabolites), given a mean 8-hr TWA
arsenic air value of 10 pg/m3 was calculat-
ed. Urinary values are listed in the same
units (micrograms As per liter or micro-
grams As per gram creatinine) as used by
the original authors.

There is remarkably good agreement
among the first seven studies listed in
Table 4 in terms of predicted concentra-
tion of urinary arsenic at 10 pg/m3 arsenic
exposure. Three of the studies (8,12,35)
measured only total arsenic in urine; no
speciation data on metabolites are available
for these studies. Five studies were con-
ducted in copper smelters where exposure
to arsenic trioxide dust and vapors occurred
(Table 4). The remaining two studies listed
are a study of exposure to arsine gas in a
lead—acid battery factory (35) and a study
of exposure to arsenic trioxide fumes and
dust in a sulfuric acid chemical factory
(16). Assuming a urinary creatinine con-
centration of 1.13 g/l, the overall average
predicted value for arsenic in urine from
these studies at 10 pg/m3 arsenic in air is
33.4 pg/g creatinine + 8.7 (mean + SD).

In the study by Enterline et al. (8) con-
ducted at the Tacoma copper smelter,
departments were identified within the plant ~
for which both mean area air arsenic data
(ng/m3) and geometric mean urinary total
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Table 4. Summary of studies relating occupational arsenic exposure to arsenic values in urine

Airborne Equation Predicted
arsenic relating urinary urinary As
Occupational setting (ng/md) and air values at 10 pg/m3 Reference
Copper smelter n=24 X 33 pg/1® (12)
Mean =53 y =

Range 3-295 0.304

Copper smelter n=82 y=126+1.26x? 25 ug/l (13)
Low = 3.6; high =52.7
Range <LOD-1,000 pg/m®
Copper smelter n=14 y=29+20x 49 jg/g creatinine (14)
GM=17

Range 1-194

Copper smelter n=28 ( ¥ )0-5]5 44 pg/1® (8)
NA y =
Range up to 3,400 0.0064
Lead-acid storage n=41 y=119+243 x 36 pg/l? (35)
battery factory NA
Range <LOD—49

Sulfuric acid n=18 log y=1.098 + 0.353 28 pg/g creatinine (16)
chemical factory NA log x

Range 6-502
Copper smelter and n=24 y=26+0.855 x 35 pg/g creatinine (17)
arsenic trioxide refinery ~ Smelter Mean = 12.1

Range 1.3-45

Refinery Mean = 6.9

Range 1.4-38
Maintenance outage in n=40 y=122+0.10x 13 pg/g creatinine  Present
a coal-fired power plant Mean =483 study

Range 0.2-375

Abbreviations: n, number of subjects studied; LOD, limit of detection; GM, geometric mean; NA, not available;
MMA, monomethylarsonic acid; DMA, dimethylarsinic acid. Equations are of the general form y = urinary
arsenic concentration (ug/l or pg/g creatinine) and x = air arsenic time-weighted average concentration
(ng/m3). Where available, equations using urinary data for 16-hr postexposure were included in the table.

3Urinary arsenic was not speciated; values were expressed as pg/| total arsenic. All other urinary values
in the table are expressed as the sum of arsenic metabolites (i.e., ZAs metabolites or As, + MMA +

DMA). Urinary concentration units are those used

by the original authors.

bLinear equation derived from grouped data, Tables 1 and 2. Subjects wore chemical cartridge respirators.

arsenic data (pg/l) were available from past
surveys. Prior to 1971, only area air samples
were collected. Regression of arithmetic
mean air data on geometric mean urinary
data for the 28 pairs of data identified result-
ed in a nonlinear relationship: y (air concen-
tration) = 0.0064 (arsenic urine concentra-
tion)!%42, This approach is different from
the usual procedure in which the measured
air concentration is assigned as the fixed
variable x, with y (urine concentration) as
the outcome variable. (Pairs of arsenic air
and urine values apparently did not relate to
a single individual worker but to a depart-
mental work area.) This relationship was
then used to estimate air concentrations for
the remainder of the cohort, amounting to
about 2,800 men. As shown in Table 4,
rearranging this equation and with a given
air exposure of 10 pg/m3, 44 pg As/l is pre-
dicted to be excreted in urine. The authors
compared their results with those of Pinto et
al. (12) and speculated that, at low air
arsenic concentrations (<300 pg/m?), the
relationship between air arsenic and urinary

arsenic was probably poor due to interfer-
ence from dietary arsenic and analytical
problems. From recent data, however, it
appears that for breathing zone values rang-
ing between about 1 pg/m3 and 1000
pg/m?, the relationship between mean air
arsenic concentration and mean urinary
arsenic concentration is very likely linear.
Also, area air samples (as were principally
used in this study) can misrepresent expo-
sure when compared with data from person-
al breathing zone air samples collected in the
same work setting (17).

Dietary interference, presumably from
consumption of seafood containing DMA,
was noted by Hakala and Pyy (17) in spite
of speciation of urinary metabolites. Recent
reports indicate that some types of seafood
(e.g., mussels) may contain DMA, which
can interfere with specific attribution of
urinary arsenic species to airborne exposure
to inorganic arsenic (17,37-39). In this
present study of exposure to arsenic in coal
fly ash, a dietary seafood source of arsenic
is highly unlikely (Table 2). It can reason-
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ably be concluded that urinary DMA con-
centrations observed in this study arose as a
result of exposure to arsenic in the work
setting as opposed to dietary sources.

The relationship between arsenic air
concentrations and XAs metabolites in urine
in the present study of exposure to arsenic in
coal fly ash (Fig. 2 and Table 4) indicates a
relatively shallow slope over the range of
mean exposures from 0.17 to 375.2 pg
As/m3 observed. The intercept—at about 12
pg As/g creatinine in urine—is very similar,
however, to previous studies in which
dietary seafood contribution of arsenic to
urinary excretion was similarly unlikely
(Table 4) (13,16,35). The predicted mean
YAs urinary metabolites of about 33 pg As/g
urinary creatinine excreted for an air arsenic
exposure of 10 pg/m? in copper smelters
and other settings (Table 4) is nearly three
times higher than that of the predicted uri-
nary value of 13 pg As/g creatinine observed
in this study for the same TWA air exposure
to arsenic present in coal fly ash dust. Taken
as a whole, these observations suggest that
bioavailability of arsenic from airborne coal
fly ash (as indicated by urinary excretion)
may be considerably less than that for a sim-
ilar airborne concentration to arsenic triox-
ide vapors and dusts, as well as arsine gas.

Unlike other studies where As; was
shown to correlate with increasing exposure
(16,17), the level of As, was not significant-
ly related to exposure in this study. MMA
showed a very slight increase with expo-
sure, and DMA and ZAs showed the
strongest positive relationship with expo-
sure. Indications from studies in animals
(40-42) and humans (43-45) are that sat-
uration or inhibition of the second step of
methylation occurs at high exposures,
which may lead to observations of a slight
increase in MMA in urine relative to
DMA. No differences were observed in the
proportions of urinary MMA and DMA
excreted between the highest and lowest
exposure groups in this study.

Contemporary analytical work using the
Laser Mass Microprobe Analyzer (LAMMA;
Leybold-Heraeus, GmbH, Kéln, Germany)
combined with standard analytical methods
has shown that the predominant arsenic
compound present in coal fly ash dusts from
the Novaky power plant is calcium arsenate
(pentavalent arsenic form) (46). The com-
pound was found to be distributed rather
uniformly on the irregular surface of fly-ash
particles. In contrast, the predominant
arsenic compound present in the copper
smelter work setting is known to be arsenic
trioxide (trivalent), present as vapors and
dusts. The vapor pressure of arsenic trioxide
at ambient temperature is significant at

about 0.6 g/m3 at 25°C (47).

Smith et al. (73) collected fractionated
particulate personal breathing zone samples
on a subset of workers and explored correla-
tions between individual breathing zone
particle fractions termed respirable (<5 pm)
and irrespirable (>5 pm) and urinary excre-
tion of metabolite species. These investiga-
tors found that urinary excretion of triva-
lent As,, MMA, and DMA was more closely
related to exposure to irrespirable particles,
that excretion of pentavalent As; was equally
related to both respirable and irrespirable
particulates, and that the ZAs metabolites
were more related to respirable than irres-
pirable particulates. The bulk of particles
present in this power plant boiler mainte-
nance work setting are irrespirable (Table
3); however, a portion of large particles can
be deposited in the upper airways and be
absorbed or coughed up and swallowed, as
was also speculated by Smith et al. (13). It
is likely that urinary arsenic values observed
here relate predominantly to respiratory
deposition of the finer particle fractions that
constituted a relatively small portion of par-
ticle mass in this work setting.

In addition to exposure to arsenic dusts,
exposures to arsenic vapors occur in copper
smelters as well as in sulfuric acid chemical
factory work settings (14,16,17). The prin-
cipal exposure in the lead—acid storage bat-
tery factory was to arsine gas, with very
much less exposure to arsenic particulates
(35). Exposure to arsenic gases or vapors
was not observed to occur in the power
plant boiler maintenance work setting (20).

Differences in arsenic compound char-
acteristics, matrix configuration and com-
position, and particle size distribution all
probably contribute to differences in depo-
sition, uptake, and absorption of airborne
arsenic and ultimate urinary excretion in
these very different workplace settings.
These factors need to be carefully consid-
ered, especially when assessing results of
biological monitoring for metals in differ-
ent work settings (48).

Summary

In published studies from copper smelters
and other work settings, the mean of XAs
urinary metabolites of about 33 pg As/g
creatinine is quite consistently predicted
for an air arsenic TWA exposure of 10
pg/m3. This level of excretion is nearly
three times higher than the predicted uri-
nary value observed in this study of coal fly
ash exposures for the same TWA air expo-
sure of 10 pg/m3 arsenic. Results strongly
suggest that bioavailability of arsenic from
airborne coal fly ash (as indicated by uri-
nary excretion) is approximately one-third
of that for a similar airborne concentration
to arsenic trioxide vapors and dusts as well

Environmental Health Perspectives « Volume 105, Number 8, August 1997

as arsine gas. Further detailed investigation
is needed, however, to more thoroughly
explore these relationships.
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